Part Number Hot Search : 
12EH5 A2701 ILX538K MBRS1100 MBT3906 00345207 ZCAT203 MN82860
Product Description
Full Text Search
 

To Download TSH81IDDT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH80, TSH81, TSH82, TSH84
Wide band rail-to-rail operational amplifier with standby function
Features

Operating range from 4.5 to 12 V 3 dB-bandwidth: 100 MHz Slew-rate 100 V/s Output current up to 55 mA Input single supply voltage Output rail-to-rail Specified for 150 loads Low distortion, THD 0.1% SOT23-5, TSSOP and SO packages SOT23-5 SO-8 TSSOP8
Pin connections TSH80/SOT23-5
Output 1 VCC- 2 Non-inv. input 3 5 VCC+
+4 Inv. input
Pin connections TSH80/SO-8
NC 1 Inv. input 2 3 VCC- 4 _ + 8 NC 7 VCC+ 6 Output 5 NC
Applications

Video buffers A/D converter drivers Hi-fi applications
Pin connections TSH81 SO-8/TSSOP8
NC 1 Inverting input 2 Non inverting Input 3 VCC- 4 _ + 8 STANDBY 7 VCC+ 6 Output 5 NC
Description
The TSH8x series offers single, dual and quad operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers also feature large output voltage swings and a high output current capability to drive standard 150 loads. Running at single or dual supply voltages ranging from 4.5 to 12 V, these amplifiers are tested at 5 V (2.5 V) and 10 V (5 V) supplies. The TSH81 also features a standby mode, which provides the operational amplifier with a low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed and video applications. For board space and weight saving, the TSH8x series is proposed in SOT23-5, TSSOP8, SO-8 and TSSOP14 plastic micropackages.
Pin connections TSH82 SO-8/TSSOP8
Output1 1 Inverting input1 2 Non inv. input1 3 VCC- 4 _ + _ + 8 VCC+ 7 Output2 6 Inverting input2 5 Non inv. input2
Pin connections TSH84 TSSOP14
Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 Output2 7 + _ + _ _ + _ + 14 Output4 13 Inverting Input4 12 Non Inverting Input4 11 VCC 10 Non Inverting Input3 9 Inverting Input3 8 Output3
May 2009
Doc ID 9413 Rev 5
1/27
www.st.com 27
Contents
TSH80, TSH81, TSH82, TSH84
Contents
1 2 3 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 3.2 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 5
Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 5.2 5.3 5.4 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Absolute maximum ratings and operating conditions
1
Absolute maximum ratings and operating conditions
Table 1.
Symbol VCC Vid Vi Toper Tstg Tj Supply voltage (1) Differential input voltage Input voltage
(3) (2)
Absolute maximum ratings
Parameter Value 14 2 6 -40 to +85 -65 to +150 150
(4)
Unit V V V C C C
Operating free air temperature range Storage temperature Maximum junction temperature Thermal resistance junction to case SOT23-5 SO8 TSSOP8 TSSOP14
Rthjc
80 28 37 32 250 157 130 110 2 0.2 1
C/W
Rthja
Thermal resistance junction to ambient area SOT23-5 SO8 TSSOP8 TSSOP14 HBM: human body model(5) MM: machine model(6) CDM: charged device model(7)
C/W
ESD
kV
1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal. 3. The magnitude of input and output must never exceed VCC +0.3 V. 4. Short-circuits can cause excessive heating. 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 ). This is done for all couples of connected pin combinations while the other pins are floating. 7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Operating conditions
Parameter Supply voltage Common mode input voltage range Threshold on pin 8 for TSH81
-
Symbol VCC VIC Standby (pin 8)
Value 4.5 to 12 VCC to (VCC -1.1) (VCC-) to (VCC+)
+
Unit V V V
Doc ID 9413 Rev 5
3/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
2
Table 3.
Symbol |Vio| Vio Iio Iib Cin ICC
Electrical characteristics
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 C (unless otherwise specified)
Parameter Input offset voltage Input offset voltage drift vs. temperature Input offset current Input bias current Input capacitance Supply current per operator Tamb = 25 C Tmin < Tamb < Tmax +0.13 0.1 6 0.3 8.2
CMR
Common mode rejection ratio (Vic/Vio)
97 75
dB
SVR PSR
Supply voltage rejection ratio Tamb = 25 C (VCC/Vio) Tmin < Tamb < Tmax Power supply rejection ratio (VCC/Vout) Positive and negative rail RL = 150 connected to 1.5 V and Vout = 1 V to 4 V Tamb = 25 C Tmin < Tamb < Tmax Vid = +1, Vout connected to 1.5 V Tamb = 25 C Tmin < Tamb < Tmax Vid = -1, Vout connected to 1.5 V Tamb = 25 C Tmin < Tamb < Tmax
dB dB
75
Avd
Large signal voltage gain
75 70 35 28 33 28
84
dB
|Source| Io Sink
55
mA
55
4/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84 Table 3.
Symbol
Electrical characteristics
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 C (unless otherwise specified) (continued)
Parameter Test conditions Tamb = 25 C RL = 150 connected to GND RL = 600 connected to GND RL = 2 k connected to GND RL = 10 k connected to GND RL = 150 connected to 2.5 V RL = 600 connected to 2.5 V RL = 2 k connected to 2.5 V RL = 10 k connected to 2.5 V Tmin < Tamb < Tmax RL = 150 connected to GND RL = 150 connected to 2.5 V Tamb = 25 C RL = 150 connected to GND RL = 600 connected to GND RL = 2 k connected to GND RL = 10 k connected to GND RL = 150 connected to 2.5 V RL = 600 connected to 2.5 V RL = 2 k connected to 2.5 V RL = 10 k connected to 2.5 V Tmin < Tamb < Tmax RL = 150 connected to GND RL = 150 connected to 2.5 V F = 10 MHz AVCL= +11 AVCL= -10 AVCL= +1 RL = 150 connected to 2.5 V AVCL=+2 RL = 150 // CL to 2.5 V CL = 5 pF CL = 30 pF RL = 150 // 30 pF to 2.5 V F = 100 kHz AVCL= +2, F = 4 MHz RL = 150 // 30 pF to 2.5 V Vout = 1Vpp Vout = 2Vpp Min. Typ. Max. Unit
4.2 4.60(1) 4.5
Voh
High level output voltage
4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93
V
4.1 4.4 48 54 55 56 220 105 76 61 150
Vol
Low level output voltage
400
mV
200 450 65 55 87 MHz
GBP
Gain bandwidth product
Bw
Bandwidth at -3 dB
MHz
SR
Slew rate
60
104 105 40 11
V/s
m en
Phase margin Equivalent input noise voltage
(degree) nV/ Hz
THD
Total harmonic distortion
-61 -54
dB
IM2
AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 connected to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz product spurious measurement at 100 kHz
-76
dBc
Doc ID 9413 Rev 5
5/27
Electrical characteristics Table 3.
Symbol
TSH80, TSH81, TSH82, TSH84
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25 C (unless otherwise specified) (continued)
Parameter Third order intermodulation product Test conditions AVCL = +2, Vout = 2 Vpp RL = 150 to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz AVCL = +2, RL = 150 to 2.5 V F = 4.5 MHz, Vout = 2 Vpp AVCL = +2, RL = 150 to 2.5 V F = 4.5 MHz, Vout = 2 Vpp F = DC to 6 MHz, AVCL = +2 F = 1 MHz to 10 MHz Min. Typ. Max. Unit
IM3
-68
dBc
G Df Gf
Differential gain Differential phase Gain flatness
0.5 0.5 0.2 65
% (degree) dB dB
Vo1/Vo2 Channel separation
1. Tested on the TSH80ILT only.
6/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84 Table 4.
Symbol |Vio| Vio Iio Iib Cin ICC
Electrical characteristics
VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 C (unless otherwise specified)
Parameter Input offset voltage Input offset voltage drift vs. temperature Input offset current Input bias current Input capacitance Supply current per operator Tamb = 25 C Tmin < Tamb < Tmax -4.9 < Vic < 3.9 V and Vout = GND Tamb = 25 C Tmin < Tamb < Tmax Tamb = 25 C Tmin < Tamb < Tmax Positive and negative rail RL = 150 connected to GND Vout = -4 to +4 Tamb = 25 C Tmin < Tamb < Tmax Vid = +1, Vout connected to 1.5 V Tamb = 25 C Tmin < Tamb < Tmax Vid = -1, Vout connected to 1.5 V Tamb = 25 C Tmin < Tamb < Tmax Tamb = 25 C RL = 150 connected to GND RL = 600 connected to GND RL = 2 k connected to GND RL = 10 k connected to GND Tmin < Tamb < Tmax RL = 150 connected to GND Tamb = 25 C RL = 150 connected to GND RL = 600 connected to GND RL = 2 k connected to GND RL = 10 k connected to GND Tmin < Tamb < Tmax RL = 150 connected to GND 81 72 71 65 Test conditions Tamb = 25 C Tmin < Tamb < Tmax Tmin < Tamb < Tmax Tamb = 25 C Tmin < Tamb < Tmax Tamb = 25 C Tmin < Tamb < Tmax Min. Typ. 0.8 Max. 10 12 Unit mV V/C 3.5 5 15 20 A A pF 12.3 13.4 mA
2 0.1 6 0.7 9.8
CMR
Common mode rejection ratio (Vic/Vio) Supply voltage rejection ratio (VCC/Vio) Power supply rejection ratio (VCC/Vout)
106 77
dB
SVR PSR
dB dB
75
Avd
Large signal voltage gain
75 70 35 28 30 28 4.2
86
dB
|Source| Io Sink
55
mA
55
Voh
High level output voltage
4.36 4.85 4.9 4.93
V
4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV
Vol
Low level output voltage
-4.3
Doc ID 9413 Rev 5
7/27
Electrical characteristics Table 4.
Symbol
TSH80, TSH81, TSH82, TSH84
VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25 C (unless otherwise specified) (continued)
Parameter Test conditions F = 10 MHz AVCL = +11 AVCL = -10 AVCL = +1 RL = 150 // 30 pF to GND AVCL = +2 RL = 150 // CL to GND CL = 5 pF CL = 30 pF RL = 150 connected to GND Min. Typ. Max. Unit
GBP
Gain bandwidth product
65 55 100
MHz
Bw
Bandwidth at -3 dB
MHz
SR
Slew rate
68
117 118 40 11
V/s
m en
Phase margin
(degree) nV/ Hz
Equivalent input noise voltage F = 100 kHz AVCL = +2, F = 4 MHz RL = 150 // 30 pF to GND Vout = 1 Vpp Vout = 2 Vpp
THD
Total harmonic distortion
-61 -54
dB
IM2
AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 to GND product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 100 kHz Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 to GND Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz AVCL = +2, RL = 150 to GND F = 4.5 MHz, Vout = 2 Vpp AVCL = +2, RL = 150 to GND F = 4.5 MHz, Vout = 2 Vpp F = DC to 6 MHz, AVCL = +2 F = 1 MHz to 10 MHz
-76
dBc
IM3
-68
dBc
G Df Gf Vo1/Vo2
Differential gain Differential phase Gain flatness Channel separation
0.5 0.5 0.2 65
% (degree) dB dB
8/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84 Table 5.
Symbol Vlow Vhigh ICC-STBY Zout Ton Toff
Electrical characteristics
Standby mode - VCC+, VCC-, Tamb = 25 C (unless otherwise specified)
Parameter Standby low level Standby high level Current consumption per Pin 8 (TSH81) to VCCoperator when Standby is active Output impedance (Rout//Cout) Time from Standby mode to Active mode Time from Active mode to Standby mode Down to ICC-STBY = 10 A Rout Cout Test conditions Min. VCC(VCC +2) 20 10 17 2 10
-
Typ.
Max. (VCC- +0.8) (VCC ) 55
+
Unit V V A M pF s s
Table 6.
TSH81 standby control pin status
Operator status Standby Active
TSH81 standby control pin 8 (STANDBY) Vlow Vhigh
Doc ID 9413 Rev 5
9/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
Figure 1.
Closed loop gain and phase vs. frequency
Figure 2.
Overshoot vs. output capacitance
Gain = +2, VCC = 2.5 V, RL = 150 Tamb = 25 C ,
10 200
Gain = +2, VCC = 2.5 V, Tamb = 25 C
10
150//33pF 150//22pF
5
Gain Gain (dB)
0
100
150//10pF
5
Ph ase ()
Gain (dB)
150
0 -5
Phase
-100
0
-10
-15 1E+4 1E+5 1E+6 1E+7 1E+8
-200 1E+9
-5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
Freq uen cy (Hz)
Figure 3.
Closed loop gain and phase vs. frequency
Figure 4.
Closed loop gain and phase vs. frequency
Gain = -10, VCC = 2.5 V, RL = 150 Tamb = 25 C ,
30 200
Gain = +11, VCC = 2.5 V, RL = 150 Tamb = 25 C ,
30 0
Phase
20
150
20
Ph as e
100
Gain
-50
Gain (dB)
Gain (dB)
10
50
10
0 0 -50
- 10 1E+4 1E+5 1E+6 1E+7 1E+8 0
-100
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 5.
Large signal measurement positive slew rate
Figure 6.
Large signal measurement negative slew rate
Gain = +2, VCC = 2.5 V, ZL = 150 //5.6 pF, Vin = 400
3
Gain = +2, VCC = 2.5 V, ZL = 150 //5.6 pF, Vin = 400 mVpk
2
1
Vout (V)
0
-1
-2
-3 0 10 20 30 40 50 60 70 80
Time (ns)
10/27
Doc ID 9413 Rev 5
Phase ()
Gain
Phase ()
TSH80, TSH81, TSH82, TSH84
Electrical characteristics
Figure 7.
Small signal measurement - rise time
Figure 8.
Small signal measurement - fall time
Gain = +2, VCC = 2.5 V, RL = 150 Vin = 400 mVpk ,
0.06
Gain = +2, VCC = 2.5 V, RL = 150 Vin = 400 mVpk ,
0.06
0.04
0.04
Vin, Vout (V)
0.02
0.02
Vin, Vout (V)
Vout
0
0 Vout Vin -0.02
Vin
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 9.
Channel separation (crosstalk) vs. frequency
VIN
Figure 10. Channel separation (crosstalk) vs. frequency
Gain = +11, VCC = 2.5 V, ZL = 150 //27 pF
-20
Measurement configuration: crosstalk = 20 log(V0/V1)
+ + 49.9 100 1k 150
-30
V1
Xtalk (dB)
-40
4/1output
-50
3/1output
-60 -70 -80
+ 49.9 100 1k 150
2/1output
-90
VO
-100 -110 1E+4 1E+5 1E+6 1E+7
Frequency (Hz)
Figure 11. Equivalent input noise voltage
Gain = +100, VCC = 2.5 V, no load
30
Figure 12. Maximum output swing
Gain = +11, VCC = 2.5 V, RL = 150
3
2 25
+ _
1 0k 100
Vout 1
en (nV/ Hz)
20
Vin, Vout (V)
Vin 0
15
-1
10
-2
5 0 .1 1 10 10 0 1000
-3 0.0E+0 5.0E -2 1.0E-1 1.5E- 1 2.0 E-1
Frequency (kHz)
Time (ms)
Doc ID 9413 Rev 5
11/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84 Figure 14. Third order intermodulation(1)
Gain = +2, VCC = 2.5 V, ZL = 150 //27 pF, Tamb = 25 C
0 -10
Figure 13. Standby mode - Ton, Toff
VCC = 2.5 V, open loop
3
2
-20
1
-30
Vin, Vout (V)
0 Vout -1
IM3 (dBc)
-40 -50
80kHz 7 40kHz
-60 -70
-2
-80
-3 Ton 0 2 E-6 S tandby Toff 6E- 6 8 E-6 1E-5
-90
380kHz 640kHz
-100
4E-6
0
1
2
3
4
time (s)
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy.
Figure 15. Group delay
Gain = +2, VCC = 2.5 V, ZL = 150 //27 pF, Tamb = 25 C
Gain
Group Delay 5.32ns
12/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Electrical characteristics
Figure 16. Closed loop gain and phase vs. frequency
Gain = +2, VCC = 5 V, RL = 150 Tamb = 25 C ,
10 200
Figure 17. Overshoot vs. output capacitance
Gain = +2, VCC = 5 V, Tamb = 25 C
20
150//33pF
5
Gain
0
10
100
150//22pF
150//10pF
Gain (dB)
Gain (dB)
0
150
-5
0
Phase ()
-10
Phase
-10
-100 -15
-20
-20 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
-30 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 18. Closed loop gain and phase vs. frequency
Gain = -10, VCC = 5 V, RL = 150 Tamb = 25 C ,
30 20 0
Figure 19. Closed loop gain and phase vs. frequency
Gain = +11, VCC = 5 V, RL = 150 Tamb = 25 C ,
30 0
Phas e 15 0 20
Phase
20
Gain (dB)
10 50
10
-100
0 0
0
- 10 1E+4 1E+5 1 E+6 1E+7 1 E+8
-5 0 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 20. Large signal measurement positive slew rate
Gain = +2, VCC = 5 V, ZL = 150 //5.6 pF, Vin = 400 mVpk
5 4 3 2 1
Figure 21. Large signal measurement negative slew rate
Gain = +2, VCC = 5 V, ZL = 150 //5.6 pF, Vin = 400 mVpk
5 4 3 2 1
Vout (V)
0 -1 -2 -3 -4 -5 0 20 40 60 80 10 0
Vout (V)
0 -1 -2 -3 -4 -5 0 20 40 60 80 10 0
Time (ns)
Time (ns)
Doc ID 9413 Rev 5
Phase ()
Gain (dB)
Phase ()
Gain
10 0
Gain
-50
13/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
Figure 22. Small signal measurement - rise time
Gain = +2, VCC = 5 V, RL = 150 Vin = 400 mVpk ,
0.06
Figure 23. Small signal measurement - fall time
Gain = +2, VCC = 5 V, RL = 150 Vin = 400 mVpk ,
0 .06
0.04
0 .04
Vin, Vout (V)
Vin, Vout (V)
0.02
0 .02
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 24. Channel separation (crosstalk) vs. frequency
Measurement configuration: crosstalk = 20 log(V0/V1)
VIN
49.9
Figure 25. Channel separation (crosstalk) vs. frequency
Gain = +11, VCC = 5 V, ZL = 150 / /27 pF
-2 0
+ + 150
-3 0
V1
Xtalk (dB)
-4 0 -5 0 3/1output -6 0 -7 0 -8 0 4/1 output
100 1k
2/1out put
+ 49.9 100 1k 150
-9 0
VO
-1 00 -110 1E+4 1E+5 1E+6 1E+7
Frequency (Hz)
Figure 26. Equivalent input noise voltage
Gain = +100, VCC = 5 V, no load
30
Figure 27. Maximum output swing
Gain = +11, VCC = 5 V, RL = 150
5 4
Vout
25
+ _
1 0k 100
3 2
en (nV/ Hz)
Vin, Vout (V)
20
1
Vin
0 -1 -2
15
10
-3 -4
5 0 .1 1 10 10 0 1000
-5 0.0E+0 5.0 E-2 1.0E-1 1.5E- 1 2 .0E- 1
Frequency (kHz)
Time (ms)
14/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Electrical characteristics Figure 29. Third order intermodulation(1)
Gain = +2, VCC = 5 V, ZL = 150 / /27 pF, Tamb = 25 C
0
Figure 28. Standby mode - Ton, Toff
VCC = 5 V, open loop
5
-10 -20 -30
Vin, Vout (V)
Vout
-40
IM3 (dBc)
0
80kHz
-50
740kHz
-60 -70 -80
-5 Ton 0 2E -6
Standby
-90
Toff
-10 0
640kHz
8E-6
0 1 2 3
380kHz
4
4E-6
6E- 6
time (s)
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy.
Figure 30. Group delay
Gain = +2, VCC = 5 V, ZL = 150 //27 pF, Tamb = 25 C
Gain
Group Delay 5.1ns
Doc ID 9413 Rev 5
15/27
Test conditions
TSH80, TSH81, TSH82, TSH84
3
3.1
Test conditions
Layout precautions
To make the best use of the TSH8X circuits at high frequencies, some precautions have to be taken with regard to the power supplies.
In high-speed circuit applications, the implementation of a proper ground plane on both sides of the PCB is mandatory to ensure low inductance and low resistance common return. Power supply bypass capacitors (4.7 F and ceramic 100 pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and positive pins. All inputs and outputs must be properly terminated with output resistors; thus, the amplifier load is resistive only and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op-amp inputs and outputs in order to decrease parasitic capacitance and inductance.

Time constants result from parasitic capacitance. To reduce time constants in lowergain applications, use a low feedback resistance (under 1 k). Choose the smallest possible component sizes (SMD). On the output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize the effect of the load capacitance.
Figure 31. CCIR330 video line
16/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Test conditions
3.2
Video capabilities
To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains five (flat) levels of luminance onto which the chrominance signal is superimposed. The luminance gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (or differential gain) distortion is present if a signal chrominance phase (gain) is affected by the luminance level. The differential phase and gain represent the ability to uniformly process the high frequency information at all luminance levels. When a differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA
Doc ID 9413 Rev 5
17/27
Test conditions Table 7. Video results
Value (VCC = 2.5 V)
TSH80, TSH81, TSH82, TSH84
Parameter
Value (VCC = 5 V)
Unit
Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5
0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2
0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1
% % % % % % % % % % % % % % Degree Degree Degree Degree Degree Degree Degree Degree
18/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Precautions on asymmetrical supply operation
4
Precautions on asymmetrical supply operation
The TSH8x can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed so as to reject any noise present on the supply rail. As the bias current is 15 A, you should use a high resistance R1 (approximately 10 k) to avoid introducing an offset mismatch at the amplifier's inputs. Figure 33. Asymmetrical supply schematic diagram
IN Cin
+
Vcc+ R1 R2 R3 C1 C3 Cf C2 R4
Cout OUT
R5 RL
AM00845
C1, C2, C3 are bypass capacitors intended to filter perturbations from VCC. The following capacitor values are appropriate. C1 = 100 nF and C2 = C3 = 100 F R2 and R3 are such that the current through them must be superior to 100 times the bias current. Therefore, you could use the following resistance values. R2 = R3 = 4.7 k Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout, Cout). With R1 = 10 k Rout = RL = 150 , and Cin = 2 F, Cout = 220 F the cutoff , frequency obtained is lower than 10 Hz. Figure 34. Use of the TSH8x in a gain = -1 configuration
Cf
1k
IN Cin
1k
Vcc+ R1 R2 R3 C1 C3 C2
Cout OUT
+
RL
AM00846
Doc ID 9413 Rev 5
19/27
Package information
TSH80, TSH81, TSH82, TSH84
5
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark.
20/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Package information
5.1
SO-8 package information
Figure 35. SO-8 package mechanical drawing
Table 8.
SO-8 package mechanical data
Dimensions
Ref. Min.
Millimeters Typ. Max. Min.
Inches Typ. Max.
A A1 A2 b c D E E1 e h L L1 k ccc 1 0.25 0.40 1.04 0.10 1.25 0.28 0.17 4.80 5.80 3.80 4.90 6.00 3.90 1.27
1.75 0.25 0.004 0.049 0.48 0.23 5.00 6.20 4.00 0.011 0.007 0.189 0.228 0.150 0.193 0.236 0.154 0.050 0.50 1.27 0.010 0.016 0.040 8 0.10 1
0.069 0.010
0.019 0.010 0.197 0.244 0.157
0.020 0.050
8 0.004
Doc ID 9413 Rev 5
21/27
Package information
TSH80, TSH81, TSH82, TSH84
5.2
TSSOP8 package information
Figure 36. TSSOP8 package mechanical drawing
Table 9.
TSSOP8 package mechanical data
Dimensions
Ref. Min.
Millimeters Typ. Max. Min.
Inches Typ. Max.
A A1 A2 b c D E E1 e k L L1 aaa 0 0.45 0.60 1 0.05 0.80 0.19 0.09 2.90 6.20 4.30 3.00 6.40 4.40 0.65 1.00
1.20 0.15 1.05 0.30 0.20 3.10 6.60 4.50 0.002 0.031 0.007 0.004 0.114 0.244 0.169 0.118 0.252 0.173 0.0256 8 0.75 0 0.018 0.024 0.039 0.10 0.039
0.047 0.006 0.041 0.012 0.008 0.122 0.260 0.177
8 0.030
0.004
22/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Package information
5.3
TSSOP14 package information
Figure 37. TSSOP14 package mechanical drawing
Table 10.
TSSOP14 package mechanical data
Dimensions
Ref. Min.
Millimeters Typ. Max. Min.
Inches Typ. Max.
A A1 A2 b c D E E1 e L L1 k aaa 0 0.45 0.05 0.80 0.19 0.09 4.90 6.20 4.30 5.00 6.40 4.40 0.65 0.60 1.00 1.00
1.20 0.15 1.05 0.30 0.20 5.10 6.60 4.50 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 0.75 0.018 0.024 0.039 8 0.10 0 0.004 0.039
0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176
0.030
8 0.004
Doc ID 9413 Rev 5
23/27
Package information
TSH80, TSH81, TSH82, TSH84
5.4
SOT23-5 package information
Figure 38. SOT23-5 package mechanical drawing
Table 11.
SOT23-5 package mechanical data
Dimensions
Ref. Min.
Millimeters Typ. Max. Min.
Inches Typ. Max.
A A1 A2 B C D D1 e E F L K
0.90
1.20
1.45 0.15
0.035
0.047
0.057 0.006
0.90 0.35 0.09 2.80
1.05 0.40 0.15 2.90 1.90 0.95
1.30 0.50 0.20 3.00
0.035 0.013 0.003 0.110
0.041 0.015 0.006 0.114 0.075 0.037
0.051 0.019 0.008 0.118
2.60 1.50 0.10 0 degrees
2.80 1.60 0.35
3.00 1.75 0.60 10 degrees
0.102 0.059 0.004
0.110 0.063 0.013
0.118 0.069 0.023
24/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Ordering information
6
Ordering information
Table 12.
Type
Order codes
Temperature range Package Packaging Marking
TSH80ILT TSH80IYLT(1) TSH80ID/DT TSH80IYD/IYDT(1) TSH81ID/DT TSH81IPT TSH82ID/DT TSH82IPT TSH84IPT -40C to +85C
SOT23-5 SOT23-5 (Automotive grade level) SO-8 SO-8 (Automotive grade level) SO-8 TSSOP8 SO-8 TSSOP8 TSSOP14 Tape & reel Tube or tape & reel Tape & reel Tape & reel Tube or tape & reel Tape & reel
K303 K310 TSH80I SH80IY TSH81I SH81I TSH82I SH82I SH84I
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.
Doc ID 9413 Rev 5
25/27
Revision history
TSH80, TSH81, TSH82, TSH84
7
Revision history
Date Revision Changes
1-Feb-2003 2-Aug-2005 12-Apr-2007 24-Oct-2007
1 2 3 4
First release. PPAP references inserted in the datasheet, see Table 12: Order codes on page 25. Corrected temperature range for TSH80IYD/IYDT and TSH82IYD/IYDT order codes in Table 12: Order codes on page 25. TSH81IYPT PPAP references inserted in the datasheet, see Table 12: Order codes on page 25. Added data relating to the quad TSH84 device. Removed TSH81IYPT, TSH81IYD-IYDT, TSH82IYPT and TSH82IYD-IYDT order codes in Table 12: Order codes.
19-May-2009
5
26/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
Doc ID 9413 Rev 5
27/27


▲Up To Search▲   

 
Price & Availability of TSH81IDDT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X